Estimating and forecasting using simple fiscal rules for euro area countries

Kit Reicher and Martin Plödt

Kiel Institute for the World Economy

24.05.2013

- Introduction
- 2 Specification of fiscal rules
- Stimation results
- Simulation

- Introduction
- 2 Specification of fiscal rules

Motivation

Introduction

European sovereign debt crisis brought the implementation of fiscal rules to the forefront of many policy discussions.

- Targets for or restrictions on fiscal aggregates often seen as a useful policy to reach sustainable government finances.
- May reduce uncertainty about future policy decisions.

This paper specifies a fiscal rule and then:

- Measures fiscal policy behavior in the eurozone based on different structural indicators.
- Proposes a specification for a simple fiscal policy rule, forecasts future debt and primary balance paths based on this rule.

- Introduction
- Specification of fiscal rules
- 3 Estimation results
- 4 Simulation

General specification of Snower et al. (2011):

$$\frac{L_t}{Y_t} = k_t + a\left(1 - \frac{\bar{Y}_t}{Y_t}\right) + c^{CR}\left(\frac{B_{t-1}}{Y_{t-1}} - b^{CR}\right)_+ + e_t, \quad (1)$$

$$k_t = \left(1 - \frac{1}{(1 + \bar{\pi}_t)(1 + \bar{g}_t)}\right) b^{CR}.$$
 (2)

Alternatively, our generalization (as a primary surplus rule):

$$\frac{P_t}{Y_t} = k_t + a \left(1 - \frac{\bar{Y}_t}{Y_t} \right) + c \left(\frac{B_{t-1}}{Y_{t-1}} - b^* \right) + c^{CR} \left(\frac{B_{t-1}}{Y_{t-1}} - b^{CR} \right)_+ + e_t;$$
(3)

$$k_t = \left(\frac{(1+\bar{l}_t)}{(1+\bar{\pi}_t)(1+\bar{g}_t)} - 1\right)b^*. \tag{4}$$

The choice of \bar{Y}_t and stationarity issues

Calculation of (unobservable) structural indicator variable necessary.

- Potential GDP and trend GDP are possible indicators.
- Model-contingent, not precisely measured, prone to revision.
- Implications for measured cyclicality.

(Near-) unit root behavior in the debt ratio: $\rightarrow e_t$ might follow a random walk.

- Take equation (3) in first differences.
- Trend growth of output (vs. growth in trend output): More robust to unreliable estimates.

Introduction

A rule in first differences

Taking equation (3) in first differences, omitting c^{CR} :

$$\Delta \frac{P_t}{Y_t} = a \left(\frac{1}{1 + \bar{g}_t} - \frac{Y_{t-1}}{Y_t} \right) - c \Delta \frac{B_{t-1}}{Y_{t-1}} + \varepsilon_t, \tag{5}$$

where ε_t equals Δe_t .

We add an additional term to capture additional consolidation which is required to push the debt-GDP ratio towards b^{CR} :

$$\Delta \frac{P_{t}}{Y_{t}} = a \left(\frac{1}{1 + \bar{g}_{t}} - \frac{Y_{t-1}}{Y_{t}} \right) + c \Delta \frac{B_{t-1}}{Y_{t-1}} + d^{CR} \left(\frac{B_{t-1}}{Y_{t-1}} - b^{CR} \right)_{+} + \varepsilon_{t}.$$
(6)

- 2 Specification of fiscal rules
- Stimation results

Estimation procedure

- AMECO database, spliced to OECD data for Spain before 1995 and Italy before 1980.
- ullet Output gap endogenously related to fiscal impulse o (nonlinear) 2SLS.
- Rule (3): e_t follows AR(1) with persistence coefficient ρ. Shift dummy for Germany post-reunification. Country fixed effects in pooled estimates.
- Rule (6): Blip dummy for Germany in 1991.
- Both rules, baseline: c^{CR} and d^{CR} omitted, respectively.

Estimation results

00000

Estimation results I

Panel estimates of all specifications (full sample):

Level Specifications		с	а	ho
Potential GDP, full sample		0.081	0.493	0.717
		(0.014)	(0.133)	(0.040)
Trend GDP, full sample		0.093	0.419	0.748
		(0.017)	(0.100)	(0.039)
First Diff. Specifications	const.	с	а	
Potential GDP, full sample	0.000	0.087	0.443	
	(0.001)	(0.021)	(0.110)	
Trend GDP, full sample	-0.001	0.104	0.494	
	(0.001)	(0.022)	(0.096)	
Trend growth, full sample	-0.001	0.107	0.482	
	(0.001)	(0.022)	(0.095)	

Standard errors are given in parentheses.

Estimation results II

Introduction

Panel estimates of all specifications (post-1992):

Level Specifications		с	а	ho
Potential GDP, post-1992		0.082	0.715	0.557
		(0.023)	(0.161)	(0.068)
Trend GDP, post-1992		0.081	0.310	0.660
		(0.032)	(0.126)	(0.065)
First Diff. Specifications	const.	с	а	
Potential GDP, post-1992	0.000	0.116	0.893	
	(0.001)	(0.028)	(0.183)	
Trend GDP, post-1992	0.000	0.117	0.555	
	(0.001)	(0.029)	(0.153)	
Trend growth, post-1992	0.000	0.121	0.532	
	(0.001)	(0.029)	(0.149)	

Standard errors are given in parentheses.

Estimation results III

Introduction

The fiscal rule in differences (using growth in trend GDP):

Country	const.	С	а
France	-0.004	0.243	0.830
	(0.002)	(0.087)	(0.257)
Germany	-0.007	0.567	0.618
	(0.004)	(0.170)	(0.351)
Ireland	0.005	0.202	0.926
	(0.005)	(0.108)	(0.612)
Italy	-0.001	0.141	-0.041
	(0.003)	(0.080)	(0.327)
Spain	0.000	0.096	0.635
	(0.002)	(0.059)	(0.206)
Pooled	-0.001	0.104	0.494
	(0.001)	(0.022)	(0.096)

Standard errors are given in parentheses.

Estimation details

- Country-specific coefficients vary greatly among specifications, not always precisely measured.
- Additionally: (pooled) c^{CR} may be positive, d^{CR} hard to tell.
- Time period matters in some cases.
- Evidence of debt stabilization in levels or growth rates.

- 2 Specification of fiscal rules
- Simulation

Forecasting methodology I

- Start with data from AMECO database, use EC projections through 2014. Trend interest rate, inflation rate, growth rate of trend output equal to 1999-2012 average.
- Set up 'zero-fiscal' baseline level of actual and potential output, to account for endogeneity of output.
- Simple multiplier relationship:

$$Y_t = Y_t^* - mP_t. (7)$$

Similarly, for potential output:

$$\bar{Y}_t = \bar{Y}_t^* - m\bar{P}_t. \tag{8}$$

Forecasting methodology II

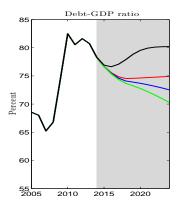
• Trend primary surplus \bar{P}_t can be approximated by:

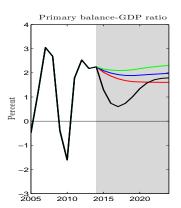
$$\bar{P}_t = \left(\frac{(1+\bar{i}_t)}{(1+\bar{\pi}_t)(1+\bar{g}_t)} - 1\right) B_{t-1}.$$
 (9)

• Beyond 2014, assume that zero-fiscal log output gap $(log(Y_t^*/\bar{Y}_t^*))$ is equal to 0.8 times its previous value; zero-fiscal trend output grows at its trend rate \bar{g}_t which is set to the average growth in trend output from 1999-2012.

Forecasting methodology III

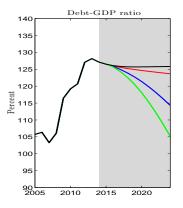
• Then derive equilibrium fiscal balance implied by equations (6) and (7) in the years after 2014:

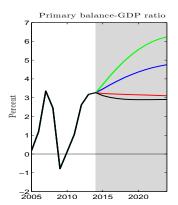

$$P_{t} = \frac{1}{1 + mj_{t}} \left(Y_{t}^{*} j_{t} - a Y_{t-1} \right), \tag{10}$$


where:

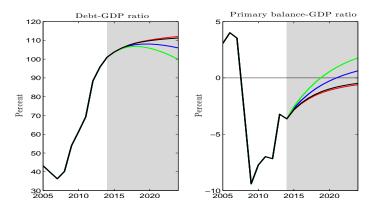
$$j_{t} = \frac{P_{t-1}}{Y_{t-1}} + c\Delta \frac{B_{t-1}}{Y_{t-1}} + d^{CR} \left(\frac{B_{t-1}}{Y_{t-1}} - b^{CR} \right) + a \frac{1}{1 + \bar{g}_{t}} + \varepsilon_{t}.$$
 (11)

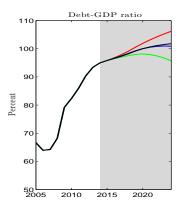
Forecasts for GERMANY

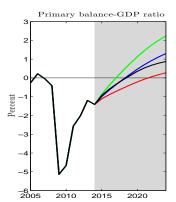

Introduction



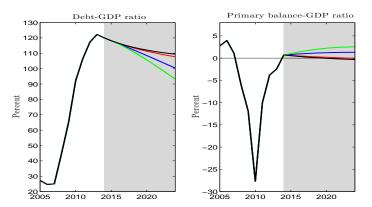
Forecasts for ITALY


Introduction


Forecasts for SPAIN


Introduction

Forecasts for FRANCE


Introduction

Forecasts for IRELAND

Introduction

Summary

- Short-run debt levels are not very sensitive to consolidation coefficients, for reasonable parameters. Very sensitive in 'out vears'.
- Forecasts depend greatly on expected growth rates, parameters.
- Simulations can detect pressure to engage in rapid consolidation.