Corporate Income Taxation and Firm Efficiency

Evidence from a large panel of European firms

Joanna Tyrowicz (GRAPE, IAAEU, UW and IZA) Jakub Mazurek (GRAPE) Karsten Staehr (TTU and Eestipank)

Warsaw, 2019

- Theory: taxes are (almost) neutral
 - if $Q = argmax\Pi$ then $\forall \tau$ it holds that $Q = argmax(1-\tau)\Pi$
 - tax shield (financing cost and structure)
 - \bullet taxes on K and L could be affecting optimal K/L

- Theory: taxes are (almost) neutral
 - if $Q = argmax\Pi$ then $\forall \tau$ it holds that $Q = argmax(1-\tau)\Pi$
 - tax shield (financing cost and structure)
 - ullet taxes on K and L could be affecting optimal K/L
- ullet Reality: More efficient firms \longrightarrow profits \uparrow

- Theory: taxes are (almost) neutral
 - if $Q = argmax\Pi$ then $\forall \tau$ it holds that $Q = argmax(1-\tau)\Pi$
 - tax shield (financing cost and structure)
 - ullet taxes on K and L could be affecting optimal K/L
- Reality: More efficient firms \longrightarrow profits $\uparrow \longrightarrow corr(\pi, tax) > 0$

- Theory: taxes are (almost) neutral
 - if $Q = argmax\Pi$ then $\forall \tau$ it holds that $Q = argmax(1-\tau)\Pi$
 - tax shield (financing cost and structure)
 - ullet taxes on K and L could be affecting optimal K/L
- Reality: More efficient firms \longrightarrow profits $\uparrow \longrightarrow corr(\pi, tax) > 0$

- Theory: taxes are (almost) neutral
 - if $Q = argmax\Pi$ then $\forall \tau$ it holds that $Q = argmax(1-\tau)\Pi$
 - tax shield (financing cost and structure)
 - ullet taxes on K and L could be affecting optimal K/L
- Reality: More efficient firms \longrightarrow profits $\uparrow \longrightarrow corr(\pi, tax) > 0$

Question

Are CI taxes neutral for firm efficiency?

- ullet Taxes may be a cost \longrightarrow reduce capital accumulation & investment
- Taxes may drive away from efficient technologies

Motivating example

Technology 1: immediate gratification

- Investment easily divisible
- Short cycle from investment to revenue
- High liquidity

Motivating example

Technology 1: immediate gratification

- Investment easily divisible
- Short cycle from investment to revenue
- High liquidity

Technology 2: suffering through the dungeons of depreciation

- Indivisible and large investments
- Long cycle from investment to revenue
- Low liquidity

- ullet Distortions to inter-temporal decisions (investment \longrightarrow capital)
 - Modigliani & Miller (1965), Auerbach (1979), Fazzari et al (1988) ...
 Giroud and Rauh (2019)

- ullet Distortions to inter-temporal decisions (investment \longrightarrow capital)
 - Modigliani & Miller (1965), Auerbach (1979), Fazzari et al (1988) ...
 Giroud and Rauh (2019)
- Exploit tax reforms / discontinuities for exogeneity
 - Romer & Romer (2010), Arnold et al (2011), Spinnewyn et al (2017)

- ullet Distortions to inter-temporal decisions (investment \longrightarrow capital)
 - Modigliani & Miller (1965), Auerbach (1979), Fazzari et al (1988) ...
 Giroud and Rauh (2019)
- Exploit tax reforms / discontinuities for exogeneity
 - Romer & Romer (2010), Arnold et al (2011), Spinnewyn et al (2017)
- (Accounting) Literature on book-tax conformity and tax audits

- Distortions to inter-temporal decisions (investment → capital)
 - Modigliani & Miller (1965), Auerbach (1979), Fazzari et al (1988) ...
 Giroud and Rauh (2019)
- Exploit tax reforms / discontinuities for exogeneity
 - Romer & Romer (2010), Arnold et al (2011), Spinnewyn et al (2017)
- (Accounting) Literature on book-tax conformity and tax audits

Contribution

- Instead of reforms: "business as usual" identification
- Instead of inter-temporal decision: value added (efficiency)
- Generally accessible data

Identification strategy

$$Y_{i,t} = \alpha_i(\underbrace{tax_{i,t}}, \cdot)K_{i,t}^{\beta_k^s} + L_{i,t}^{\beta_l^s}$$
(1)

OLS estimation of $tax_{i,t}$ biased \longrightarrow instrument

Identification strategy

$$Y_{i,t} = \alpha_i(\underbrace{tax_{i,t}, \cdot})K_{i,t}^{\beta_k^s} + L_{i,t}^{\beta_l^s}$$
(1)

OLS estimation of $tax_{i,t}$ biased \longrightarrow instrument

• Measure technology specific tax rate (NACE 4 digit)

$$IV_{c,s,t} = \frac{\left(ETR_{s,t} - \frac{\sum_{i \notin (c)} ETR_{s,t}}{\sum_{i \notin (c)} i}\right)}{\sqrt{\frac{1}{\sum_{i \notin (c)} i} \sum_{i \notin (c)} \left(ETR_{s,t} - \frac{\sum_{i \notin (c)} ETR_{s,t}}{\sum_{i \notin (c)} i}\right)^{2}}}$$
(2)

Identification strategy

$$Y_{i,t} = \alpha_i(\underbrace{tax_{i,t}, \cdot})K_{i,t}^{\beta_k^s} + L_{i,t}^{\beta_l^s}$$
(1)

OLS estimation of $tax_{i,t}$ biased \longrightarrow instrument

• Measure technology specific tax rate (NACE 4 digit)

$$IV_{c,s,t} = \frac{\left(ETR_{s,t} - \frac{\sum_{i \notin (c)} ETR_{s,t}}{\sum_{i \notin (c)} i}\right)}{\sqrt{\frac{1}{\sum_{i \notin (c)} i} \sum_{i \notin (c)} \left(ETR_{s,t} - \frac{\sum_{i \notin (c)} ETR_{s,t}}{\sum_{i \notin (c)} i}\right)^{2}}}$$
(2)

Use this as instrument in estimation

$$\log VA_{i,t} = \beta_k^s \log k_{i,t} + \beta_l^s \log l_{i,t} + \alpha_i (ta\hat{x}_{i,t}) + u_t + u_i + \epsilon_{i,t}$$
(3)
$$tax_{i,t} = \delta \cdot IV_{c,s,t} + \eta_t + \epsilon_{i,t}$$
(4)

Table 1: Sources of variation in taxation measures

		All firms		Firms ineligible to CF			
Variable	Firm	Country	Sector	Firm	Country	Sector	
BTD	17.8%	0.1%	0.4%	15.5%	0.1%	0.5%	
BTD / Assets	7.3%	0.0%	0.1%	6.9%	0.0%	0.0%	
BTD / PTI	65.3%	14.0%	17.1%	69.3%	14.4%	18.4%	
BTD/ taxes paid	33.2%	0.7%	0.5%	31.2%	0.8%	0.5%	

Table 1: Sources of variation in taxation measures

		All firms		Firms ineligible to CF			
Variable	Firm	Country	Sector	Firm	Country	Sector	
BTD	17.8%	0.1%	0.4%	15.5%	0.1%	0.5%	
BTD / Assets	7.3%	0.0%	0.1%	6.9%	0.0%	0.0%	
BTD / PTI	65.3%	14.0%	17.1%	69.3%	14.4%	18.4%	
BTD/ taxes paid	33.2%	0.7%	0.5%	31.2%	0.8%	0.5%	
Taxes paid	73.8%	9.6%	63.9%	76.8%	9.5%	71.9%	
Taxes paid / Assets	85.0%	5.2%	11.2%	88.0%	5.4%	6.6%	
Taxes paid / Lagged assets	66.8%	5.7%	9.8%	68.6%	6.5%	10.6%	

Table 1: Sources of variation in taxation measures

		All firms		Firm	Firms ineligible to CF			
Variable	Firm	Country	Sector	Firm	Country	Sector		
BTD	17.8%	0.1%	0.4%	15.5%	0.1%	0.5%		
BTD / Assets	7.3%	0.0%	0.1%	6.9%	0.0%	0.0%		
BTD / PTI	65.3%	14.0%	17.1%	69.3%	14.4%	18.4%		
BTD/ taxes paid	33.2%	0.7%	0.5%	31.2%	0.8%	0.5%		
Taxes paid	73.8%	9.6%	63.9%	76.8%	9.5%	71.9%		
Taxes paid / Assets	85.0%	5.2%	11.2%	88.0%	5.4%	6.6%		
Taxes paid / Lagged assets	66.8%	5.7%	9.8%	68.6%	6.5%	10.6%		
ETR (1Y)	62.9%	18.0%	20.2%	68.5%	19.7%	21.6%		
ETR (2Y)	41.1%	0.3%	45.6%	43.7%	1.3%	3.4%		

Table 1: Sources of variation in taxation measures

		All firms		Firms ineligible to CF			
Variable	Firm	Country	Sector	Firm	Country	Sector	
BTD	17.8%	0.1%	0.4%	15.5%	0.1%	0.5%	
BTD / Assets	7.3%	0.0%	0.1%	6.9%	0.0%	0.0%	
BTD / PTI	65.3%	14.0%	17.1%	69.3%	14.4%	18.4%	
BTD/ taxes paid	33.2%	0.7%	0.5%	31.2%	0.8%	0.5%	
Taxes paid	73.8%	9.6%	63.9%	76.8%	9.5%	71.9%	
Taxes paid / Assets	85.0%	5.2%	11.2%	88.0%	5.4%	6.6%	
Taxes paid / Lagged assets	66.8%	5.7%	9.8%	68.6%	6.5%	10.6%	
ETR (1Y)	62.9%	18.0%	20.2%	68.5%	19.7%	21.6%	
ETR (2Y)	41.1%	0.3%	45.6%	43.7%	1.3%	3.4%	
CF incidence	69.6%	5.9%	11.1%				

Positive correlation is robust: $corr(\tau, \pi) > 0$

Table 2: Elasticity of production with respect to taxation (FE OLS)

tax	(1) 0.133	(2)	(3)	(4)	(5)	(6)	(-)	
tax	0.133	0.107			(3)	(6)	(7)	(8)
		0.107	0.115	0.135	0.167	0.119	0.125	0.147
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
k	0.255	0.231	0.254	0.273	0.274	0.245	0.263	0.276
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.000)	(0.000)
1	0.539	0.602	0.570	0.524	0.474	0.577	0.549	0.504
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)	(0.000)	(0.000)
R^2	0.851	0.879	0.872	0.852	0.812	0.873	0.865	0.841
# i :	2,625,365	814,839	529,788	634,856	645,882	313,784	509,907	501,467

N (1) \approx 10.2 mln

 $N(2) - (5) \approx 2.2 mln$

 $N(6) - (9) \approx 2 mln$

Positive correlation is robust: $corr(\tau, \pi) > 0$

Table 3: Elasticity of production with respect to taxation (FE OLS)

	Q1 VA	Q2 VA	Q3 VA	Q4 VA	P25 VA	P50 VA	P75 VA
	(2a)	(3a)	(4a)	(5a)	(6a)	(7a)	(8a)
tax	0.205***	0.146***	0.123***	0.108***	0.167***	0.132***	0.117***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
k	0.286***	0.249***	0.232***	0.231***	0.261***	0.240***	0.228***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
1	0.483***	0.544***	0.572***	0.564***	0.518***	0.562***	0.573***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
R^2	0.861	0.865	0.862	0.828	0.863	0.865	0.853
# N	1,927,477	2,491,774	2,867,614	2,876,870	1,820,682	2,167,947	2,382,326
# i	660,251	652,751	656,461	655,902	526,093	524,682	523,986

Results

Results

$$\log \mathsf{VA}_{i,t} = \beta_k^s \log k_{i,t} + \beta_l^s \log l_{i,t} + \alpha_i (t \hat{ax}_{i,t}) + u_t + u_i + \epsilon_{i,t}$$

$$tax_{i,t} = \delta \cdot IV_{c,s,t} + \eta_t + \epsilon_{i,t}$$

Results

$$\log \mathsf{VA}_{i,t} = \beta_k^s \log k_{i,t} + \beta_l^s \log l_{i,t} + \alpha_i (t \hat{ax}_{i,t}) + u_t + u_i + \epsilon_{i,t}$$

$$tax_{i,t} = \delta \cdot IV_{c,s,t} + \eta_t + \epsilon_{i,t}$$

Table 4: OLS vs IV estimation

	OLS			ľ			
	Firms in 'trusted' sectors			Firms in 'trusted' sectors ineligible to C			
	FE	FE FE FD			FD	MI FE	MI FD
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
No inputs	0.26	0.29	-0.092	0.35	-0.078	0.32	-0.094
	(0.000)	(0.005)	(0.012)	(0.005)	(0.013)	(0.006)	(0.015)
Controlling for inputs	0.133	-0.043	-0.035	-0.056	-0.032	-0.053	-0.039
	(0.000)	(0.004)	(800.0)	(0.005)	(800.0)	(0.006)	(0.011)

Results - robustness

Table 5: Elasticity of TFP with respect to taxation (IV)

		Sector speci	fic intercep	t	Sector specific intercept and slopes				
	All	No CF	All	No CF	All	No CF	All	No CF	
	F	E	FD			FE			
	Second stage								
tax	-0.043	-0.056	-0.035	-0.032	-0.046	-0.060	-0.027	-0.038	
	(0.004)	(0.005)	(0.008)	(0.009)	(0.004)	(0.005)	(0.002)	(0.003)	
k	0.35	0.37	0.31	0.32					
	(0.002)	(0.003)	(0.006)	(0.006)					
1	0.56	0.54	0.56	0.55					
	(0.001)	(0.001)	(0.001)	(0.001)					
R^2	0.75	0.71	0.40	0.42	0.92	0.91	0.93	0.92	
-11	0.13	0.71	0.40		stage	0.91	0.93	0.92	
1) (0.014	0.1.5	2056			0.015	0.045		
IV	0.014	.015	.0056	.0063	0.014	0.015	0.045	0.040	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
R^2	0.12	0.13	0.05	0.06	0.55	0.57	0.55	0.58	

Conclusions

• Still work in progress!

Conclusions

- Still work in progress!
- We test neutrality of taxation
- We use a large, new panel dataset
- We propose a new instrument

Conclusions

- Still work in progress!
- We test neutrality of taxation
- We use a large, new panel dataset
- We propose a new instrument
- 10% more tax to paid \longrightarrow 4% lower VA
- quite robust: for 2digit NACE all negative, or insignificant
- substantial heterogeneity across countries

Thank you and I am happy to take questions!

w: grape.org.pl

t: grape_org

f: grape.org

e: j.tyrowicz@grape.org.pl