Matti Viren

University of Turku

Sensitivity of fiscal-policy effects to policy coordination and business cycle conditions

For presentation at the 10th EUROFRAME Conference on Economic Policy Issues in the European Union

Warsaw, May 24, 2013

Purpose of the paper

- Consider the effectiveness of fiscal policy; evaluate the size of fiscal multipliers by taking into account the size of the country, and nature of fiscal stimulus/fiscal consolidation
- Evaluate eventual gains from fiscal policy coordination
- Compare (results from) different models

Relevant references

- Alesina and Ardagna (2010)
- Auerbach and Gorodnichenko, (2012)
- Corsetti, Meier and Muller (2012)
- Devries, Guajardo, Leigh and Pescatori (2011),
- Guajardo, Leigh and Pescatori (2011)
- Ilzetzki, Mendoza and Vegh (2009)
- IMF (2010) World Economic Outlook

The models to be used

- A simple VAR model for output growth, deficit and real interest rate
- A structural multi-country macroeconomic model (NiGEM)
- A reduced form output growth model for fiscal consolidations
- Fiscal policy "reaction functions"
- All models make use of cross-country timeseries data

Use of a simple VAR for the aggregate EU15 data

Average values from individual country data; positive values of DEF are surpluses

Response to Cholesky One S.D. Innovations ± 2 S.E.

Accumulated LR impuse of Δy to Def = 0.55

Caveat: the IRF's are very different for different countries and different phases of business cycle

- The average values of correlation coefficients are strikingly low except for the impulse response of deficits w.r.t output growth
- Δy : DEF = 0.011
- Δy : rr = 0.144
- DEF: rr = 0.268
- DEF: $\Delta y = 0.779$
- Fiscal multipliers appear to be **relatively small** and **time-variant**. Thus for $\Delta y > 0$ the value (of the cumulative response) is only 0.11 while for $\Delta y < 0$, it is 1.18.

Move to the NiGEM model: A summary of the public consumption simulation						Multipliers c = coordination				
	y4	y8	yc4	yc8	ymax	ycmax	def	defc	ym	ymc
Austria	0.059	0.042	0.162	0.143	0.107	0.279	-0.154	-0.075	0.574	1.489
Belgium	0.099	0.074	0.233	0.208	0.113	0.239	-0.220	-0.107	0.536	1.131
Finland	0.124	0.151	0.175	0.228	0.159	0.268	-0.117	-0.050	0.741	1.251
France	0.273	0.261	0.333	0.332	0.274	0.339	-0.168	-0.144	1.130	1.398
Germany	0.224	0.156	0.304	0.224	0.299	0.374	-0.167	-0.130	1.574	1.967
Ireland	0.065	0.054	0.232	0.189	0.066	0.233	-0.127	-0.079	0.488	1.740
Italy	0.147	0.128	0.208	0.189	0.156	0.212	-0.146	-0.102	0.829	1.128
Netherlands	0.107	0.090	0.211	0.195	0.121	0.219	-0.230	-0.144	0.891	1.612
Portugal	0.092	0.076	0.156	0.157	0.116	0.241	-0.185	-0.144	0.574	1.193
Spain	0.166	0.159	0.246	0.274	0.175	0.274	-0.157	-0.109	1.109	1.732
Average	0.136	0.119	0.226	0.214	0.159	0.268	-0.167	-0.108	0.845	1.464

Maximum effect of a one per cent increase in public consumption on GDP with and without policy coordination

NiGEM results continued; benefit from policy coordination in small and big countries

Effect of an increase in direct taxes on GDP and government surplus/GDP with and without policy coordination: NiGEM model simulations

The IMF/GS model

- $\Delta y_t = a_0 + a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + a_3 Fiscal_t + a_4 Fiscal_{t-1} + a_5 Fiscal_{t-2} + fixed time and cross-section effects + u_t$
- where y indicates log GDP, and Fiscal the fiscal consolidation indicator (measured in terms GDP, 5) constructed by IMF, all with panel data (IMF World Economic Outlook, October 2010, Ch3).

Estimation results with cross-country data 1978-2009

	1	2	3	4	5	6
Δy_{-1}	.509	.479	.487	.558	.498	.482
	(7.83)	(7.57)	(7.81)	(7.53)	(7.81)	(7.62)
Δy_{-2}	122	073	086	238	099	089
	(1.46)	(1.30)	(1.50)	(3.94)	(1.70)	(1.59)
Fiscal	337	632	298	557	-245	618
	(1.86)	(3.18)	(2.86)	(2.25)	(1.55)	(3.11)
Fiscal ₋₁	016	456	166	062	.082	419
	(0.54)	(2.00)	(1.24)	(0.24)	(0.58)	(1.87)
Fiscal ₋₂	.223	.130	.235			
	(2.04)	(0.69)	(2.05)			
world ₋₁				.378	.403	.402
				(3.51)	(1.62)	(1.62)
\mathbb{R}^2	0.706	0.689	0.686	0.370	0.352	0.346
SEE	1.332	1.363	1.372	1.883	1.393	1.365
\mathbf{DW}	1.95	1.96	1.95	1.76	1.93	1.58
Fiscal	spend	tax	total	tax	spend	tax
fixed ef.	ct+tt	ct+tt	ct+tt	ct	ct+tr	ct+tr

ct indicates fixed cross-section effect and tt fixed time effect, tr in turn indicates random time effect. World is the growth rates of World GDP. Numbers inside parentheses a t-ratios. The dependent variable is the growth rate of GDP.

Repetito with GS research; the message is the same: taxes hurt more than spending cuts

Taxes vs spending once more, simulation results from a fixed effects model

World GDP vs the fixed time effect The fixed effects in the IMF model basically represent the World GDP growth

Alternative model

• $\Delta y_t = a_0 + a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + a_3 \Delta y_{W,t-1} + a_4 Fiscal_t + a_5 Fiscal_{t-1} + fixed effects + u_t$

•
$$y_{W,t-1} = \sum b_i y_{it-1}$$

• where b_i's are country weights, Fiscal = size of fiscal consolidation either by taxes spending cuts in terms of GDP. World GDP is now "endogenous"

But are the multipliers invariant in terms of cyclical situation?

- Not necessarily, recall the VAR results
- Also the GDP effects of fiscal consilidations seem to be much larger in economic downturns:
- If we use very a simple threshold model with the basic IMF/GS estimating equation, the sum of fiscal variables is much higher when $\Delta y < 0$; see the results in the following Table:

Simple test of linearity with the IMF model

	7	8
Δy_{-1}	.475	.465
	(7.50)	(7.48)
Δy_{-2}	085	065
	(1.46)	(1.16)
Fiscal	064	256
	(0.52)	(1.36)
(D ∆y<0)*Fiscal	647	-1.428
	(1.81)	(3.04)
R ²	0.680	0.695
SEE	1.382	1.348
DW	1.95	1.97
Fiscal	spend	tax
fixed effects	ct+tt	ct+tt

Nonlinearity

- Seems to be a prevailing feature of fiscal (policy) models
- Cf. the "policy reaction functions" (next slide)
- The effects/multipliers seem to be much larger in bad times
- If that is indeed the case, consolidation becomes much more tedious when GDP is "already" decreasing

Estimation results of a simple threshold model

Sample	g		lagged	debt ₋₁	rr	R ² /	DW	Estima
Dep.var			def/y	•		SEE	J-stat	tor
1971-	0.464		0.744	0.028	-0.106	0.789	2.00	GLS
2011	(8.22)		(7.48)	(5.10)	(2.52)	2.03		
def/y								
1971-	0.396		0.797	0.029	-0.142	0.851	2.03	OLS
1998	(6.69)		(16.61)	(4.62)	(3.06)	1.66		
def/y								
1971-	-0.579		0.815	-0.017	0121	0.932	2.11	OLS
2011	(12.06)		(13.55)	(2.13)	(3.22)	1.85		
exp/y								
1995-	-0.091		0.867	-003	0.050	0.976	1.64	OLS
2001	(3.02)		(38.11)	(0.80)	(2.18)	1.11		
rev/y								
	g g<0	g g>0						
1971-	0.741	0.327	0.750	0.025	-0.104	0.792	2.06	OLS
2011	(5.34)	(2.90)	(7.98)	(4.21)	(2.52)	2.017		
def/y								
1971-	0.983	0.265	0.795	0.028	-0.141	0.856	2.09	OLS
1998	(4.76)	(3.74)	(16.94)	(4.42)	(3.11)	1.636		
def/y								
1971-	0.776	0.405	0.536	0.060	-0.257			GMM
2011	(11.21)	(8.03)	(4.22)	(3.40)	(2.12)	2.683	30.9	
def/y								

Estimates with cyclically adjusted data

Dep.var	$\Delta y/\Delta y < 0$	$\Delta y/\Delta y > 0$	lagged	debt ₋₁	r	$R^2/$	DW Wald
			def/y			SEE	Wald
defa/ŷ	.282	.027	.826	.018	062	0.778	2.11
ols	(2.89)	(0.60)	(24.74)	(4.78)	(1.79)	1.845	0.033
defa/ŷ	.182	.108	.767	.026	057	0.782	2.02
gls	(1.51)	(1.42)	(9.05)	(5.19)	(1.09)	1.780	0.654
defpa/ŷ	.308	.127	.750	.027	.092	0.741	1.97
ols	(2.08)	(1.40)	(8.24)	(4.90)	(1.73)	1.929	0.393

Evidence of asymmetry Coefficients of GDP in a model for deficit/GDP ratio

Concluding remarks

- Fiscal multipliers are in general rather small
- But they are very different for small and big countries, open and closed economies and apparently also for different cyclical situations
- (At least for the long-term) tax effects are much stronger than spending effects
- Thus, right menu and timing for fiscal consolidation is a big issue

Assessment for policy coordination

- Fiscal policy coordination would most probably increase the effectiveness of fiscal policy (even too much?)
- The multipliers are almost twice as high as in the non-coordination case
- All countries would benefit from coordination, smaller countries somewhat more.

Thank you!